A FIELD-BASED METHOD FOR DISTINGUISHING MELOMYS BURTONI FROM M. CERVINIPES (RODENTIA: MURIDAE) IN QUEENSLAND

ANGELA FROST

FROST, A. 200804 30: A field-based method for distinguishing Melomys burtoni from M. cervinipes (Rodentia: Muridae) in Queensland. Memoirs of the Queensland Musemn 52(2): 123-126. Brisbane. ISSN 0079-8835.

Abstract

Melomys burtoni and M. cervinipes arc broadly sympatric in eastern Australia but difficult to distinguish on external criteria. Although M. cervinipes attains a larger size than M. burtoni, the two species show significant overlap in standard external measurements and reliable identification currently requires examination of a cleaned skull. The hind foot plantar pads of 20 adult individuals of each of M. burtoni and M. cervinipes were examined and found to be a consistently larger in M. cervinipes. \square Melomys, identification, burtoni, cervinipes, foot pads.

Angela Frost, School of Animal Studies, University of Queensland, Gatton, Qld, 4343 (email: angfrost@hotmail.cont); 6 September 2007.

The current taxonomy of Australian Melomys recognises a total of four species, two of which (M. burtoni (Ramsay) and M. cervinipes (Gould)) have extensive, overlapping geographic ranges in northeastern Australia (Watts \& Aslin, 1981). Although M. cervinipes attains a larger size than M. burtoni (Watts \& Aslin, 1981) and has a relatively shorter tail (tail length more-or-less equal to the combined length of the head and body vs tail significantly longer than the head plus body in M. burtoni (Watts \& Aslin, 1981)), the two spccies show significant overlap in standard external measurements. Pelage colour is individually and regionally variable in both species (Tate, 1951) and although habitat provides a useful clue to species identification (Watts \& Aslin, 1981), both species are known to occur outside their preferred habitats (closed forest for M. cenvinipes, grassland for M. burtomi) (Quecnsland Museum records). Thus, at present, reliable morphological identification requires vouchering and examination of a cleaned skull (Kcith, 1970; Knox, 1978). A method to identify the two species on external criteria would be of great use for field survey of small mammals in northeastern Australia.

Cooper (1993; 1994) described the usefulness of plantar pads on the hind foot (pes) in distinguishing sympatric and morphologically similar species of rodents in Western Australia. A key produced more recently by Metzler \& Clancy (1995) described the "longitudinal" pad of the pes as curved in M. cervimipes and straight in M. burtoni. I encountered difficultics using this feature to identify Queensland Melomys and
investigated the utility of other aspects of hind foot morphology.

MATERIALS AND METHODS

As a starting point I examined all adult spirit specimens of M. burtoni and M. cervinipes with cleaned skulls in the collection of the Queensland Museum (QM). Adult status was determined on reproductive criteria (teats obvious on females, scrotal sac prominent on males). The species identity of all specimcns was validated using the diagnostic feature of the first upper molar root pattern, as described by Knox (1978). Additional spirit specimens werc then selected from the QM collection to increase the sample size within the documented body size range overlap between M. burtoni and M. cervinipes, and secondarily, to ensure good coverage of the area of geographic overlap. Skulls from these specimens were removed and cleaned to confirm their identity. The final sample included 20 specimens of each species (see Table 1).
Measurements were made of pcs length (from heel to base of claw on central digit), combined head plus body length (anus to tip of nose), and the length of cach of the six primary plantar pads. Small accessory plantar pads are variably discretc or fused to the first and fourth interdigital pads in both Melomys spccies (Fig. 1). Measurements of these pads were designed to avoid this secondary source of variation. Measurements were taken with Mitutoyo clectronic calipers and rounded to an accuracy of 0.1 mm .
The length of each pad was plotted against pes length to identify the measurement giving

TABLE 1. Location of spccimen, sex, hind foot length, first interdigital pad length and head-body length of Melomys cervinipes and M. burtoni used in this study. Measurements in mm.

Species	QM registration number	Sex	Location	Pes length	First interdigital pad length	Head body length
Melomys cenvinipes	JM9323	M	Ayr, Barratta Ck, 3 km upstream of Bruce Hyy	25.0	2.4	91
	JM11570		Cowley Bch Training area. 1.75 km NNE Main Camp	25.2	2.4	101
	SEW 1444			25.5	2.8	96
	JM1224	F	Innisfail Common	25.4	2.7	96
	JM1383	F	Cape Hillsborough	27.3	2.7	115
	JM10991	F	Mt Inkerman	26.2	2.6	110
	JM1151	F	Crediton	24.8	2.7	93
	JM14423		Bayview Heights, Meringa	26.0	2.7	109
	JM1329	M	Caloundra	27.4	2.8	113
	JM6724		Nitchaga Bridge, 3.5 km W Koombooloomba	25.3	2.9	108
	JM10593	F	Hinchinbrook Is	25.5	3.4	110
	JM1147	F	Crediton	25.2	2.7	97
	JM5274	F	Shipton's Flat	26.7	3.0	111
	JM8337		Kirrama Ra SF	26.1	2.7	101
	JM14436	M	Noosa Heads NP (western side)	27.5	3.1	126
	JM11174	M	Nambour Bypass	26.5	2.8	122
	JM5337	F	Hinchinbrook Is,Gayundah Ck	28.3	2.7	98
	JM5341	F	Hinchinbrouk Is. Scraggy Pt	27.4	2.8	105
	JM1143	F	Crediton	26.7	2.9	114
	JM14361		Awoonga Dam, Irom Boyne Valley to Miriam Vale	25.3	3.3	97
M. burtoni	520173	M	Mackay	25.4	1.9	112
	JM13957	M	Buthen Buthen, Nesbit Rd, Mcilwraith Ra	23.6	1.8	105
	JM13559		Yabulu	24.0	1.8	111
	JM10500		Rutland Plains 1 lold, 11.5 km NW Rankin's Well	25.9	1.2	110
	J20181		Mackay	23.9	2.0	114
	J17785	M	Mt Molloy; 3 km N	24.1	1.9	94
	JM3823	F	Eurimbulah NP	25.4	1.8	97
	J20110		Mackay	24.4	1.7	100
	JM11390	M	Jenners Rd, nr Sasina	25.3	1.6	110
	JM2615	M	Kauri Ck, inlet	25.3	1.7	100
	JM382!	F	Eurimbulah NP	25.2	1.8	99
	JM12570	M	Saunders Beh, ne Townsville (Nth)	24.9	1.9	107
	J20179	M	Mackay	26.0	2.0	112
	JM1382	M	Cape 1lillsborough	24.8	1.5	104
	J21856	F	Nth Stradbroke 1s	25.8	2.2	97
	JM3820	M	Eurimbulah NP	27.9	1.9	123
	JMi14560		Princess llills llouse Dam	26.5	2.'	104
	JM14563		Princess Hill House Dam	27.4	1.9	110
	JM4267		Pirue R Bay. 23 km WNW Weipa. Rocky Pt	24.9	2.3	112
	J20101	F	Mackay	23.8	1.9	97

FIG. I. Pes of A, Melomys burtoni and B, M. cervinpipes showing the relatively larger size of all plantar pads in M. cervinipes (plantar pads outlined in both). C, Outline of pes of M. cervinipes showing method of measuring total pes length (a) and the length of the first interdigital pad (b). Measurements of the first interdigital pad should be taken on the inner side of the pad to avoid the variation in the small aecessory plantar pads which may be either diserete or fused. Speeimens figured are from the CSIRO ANWC wildlife eollection: A, M. burtoni adult male (CM16369) from Shoalwater Bay; B, M. cervinipes adult female (CM16349) from Shoalwater Bay, Speeies identifications based on upper molar root number, after Knox (1978).
the best diserimination. This proved to be the length of the first interdigital pad (terminology follows Brown \& Yalden, 1973). The method of measurement for pes length and first interdigital pad length is indieated in Fig. 1.

RESULTS

The pes of M. cervinipes averages slightly longer than that in M. burtoni (mean \pm s.d.: 26.17 ± 1.02 vs 25.22 ± 1.16; raw data in Table 1) and it also appears slightly broader for its length (Fig. 1). However, the two species show almost complete overlap in measurement ranges for pes length ($24.8-28.3$ vs $23.6-27.9$) and any difference in width would be very difficult to quantify.

In contrast, foot pad size provides a reliable means of distinguishing the two species. As is obvious in side-by-side comparison (Fig. I), all
of the plantar pads of M. cervinipes are relatively larger than those of M. burtoni. Measurements confirmed this visual impression, and further

FIG. 2. Hind foot length versus first interdigital pad length in adult M. burtoni (solid squares) and M. cervinipes (open diamonds).
demonstrated that length of the first interdigital pad gave the most complete separation between the two species when plotted against pes length (Fig. 2). Importantly, length of this pad is not significantly correlated with pes length in either specics, hence the single measurement appears to have diagnostic value across the full range of adult body size of both species. The cut off point appears to lie at 2.3 mm -in all specimens of M. burtoni the first interdigital pad was shorter than 2.3 mm , whilst in M. cervinipes this pad was consistently longer than 2.3 mm .

DISCUSSION

This study has demonstrated a consistent difference in foot pad morphology between adults of M. cervinipes and M. burtoni across their area of geographic overlap, with M. cervinipes having measurably larger plantar pads than M. burtoni. Large plantar pads in murine rodents are commonly associated with scansorial or arboreal habits and the difference in pad size is consistent with the known ecological contrast between the more arboreal M. cervinipes and the more terrestrial M. burtoni (Watts \& Aslin, 1981). Further studies could now extend this work to other species pairs within Melomys, such as M. capensis and M. burtoni that co-occur regionally on Cape York Peninsula
Although the present method appears to represent an advance over previous criteria for field identification of Australian Melomys, for several reasons I urge caution in its application. First, the reference series are relatively small (20 specimens per species) and did not sample the entire rcgion of geographic overlap, e.g. sympatric populations in northern NSW were not included. Accordingly, it is likely that with more exhaustive sampling of museum specimens, some overlap in first interdigital pad length will be detected. Second, the utility of the measurement has not been tested for sub-adult and juvenile animals. Murid rodents as a group undergo significant changes in body proportions during growth from juveniles to adults, and caution must always be exercised in applying any diagnostic criterion beyond the limits of the original dataset. In the present case, it is likely that the inter-specific difference in plantar pad size develops during
growth and that younger animals will show a less clcar distinction.
For these reasons, 1 recommend that length of the first interdigital pad be added to the list of features currently used to identify eastern Australian Melomys (i.e. overall body size, rclative tail length) and that particular care be taken to asscss the individual age of a captured specimen.

ACKNOWLEDGEMENTS

Thanks to both Dr Steve van Dyck from the Queensland Museum and to Dr Ken Aplin from the CSIRO Australian National Wildlife Collection for advice and assistance with species identification and preparation of this manuscript.

LITERATURE CITED

BROWN, J.C. \& YALDEN, D.W. 1973. The description of mammals - 2: Limbs and locomotion of terrestrial mammals. Mammal Review 3: 107-134
COOPER, N.K. 1993. Identification of Pseudomys chapmani, P. hermansbergensis. P. delicatulus and Mus musculus using footpad patterns. Western Australian Naturalist 19: 69-73
COOPER, N.K. 1994. Identification of Pseudomys albocinereus, P. occidentalis, P. shortridgci, Rattus rattus and R. fuscipes using tootpad patterns. Western Australian Naturalist 19: 279-283
KEITH, K. 1970. The occurrence of a second species of naked-tail rat, genus Melomys, in New South Walcs. CSIRO Wildlife Rescarch 15:19-26
KNOX, E. 1978. A note on the identification of Melomys species (Rodentia: Muridae) in Australia. Journal of Zoology, London 185: 276-277
METZLER, K. \& CLANCY G.P. 1995. A key to the rodents of far north-castern New South Wales, in: NSW NPWS: Vertebrate Fauna of Upper North East New South Wales, a report for the Natural Resources Audit Council, NSW National Parks \& Wildlifc Service, Sydney.
TATE, G.H.H. 1951. Results of the Archbold Expeditions. The rodents of Australia and New Guinca. Bulletin of the American Museum of Natural History 97: 183-430
WATTS, C.H.S. \& ASLIN, H.J. 1981. The Rodents of Australia. (Angus and Robertson, Sydney).

